Optical Communication Systems
Prior Learning Assessment Learning Narrative OPTI 430 Optical Communication Systems
The fourth upper level college course that I will apply my learning experiences to are the expected learning outcomes form the University of Arizona, Optical Communication Systems. The optical communication systems revolution started when researchers at Corning Glass Works in Corning, NY, invented fiber optic technology in 1970.
Over the decades, the quality and design of optical fiber has improved immensely, and, in 1977, the first fiber optic network was built and tested (Sterling, 2004, p. 6). Today, the World’s economic system is dependent upon its ability to communicate and transmit voice, video, and data information.
Networks of optical fiber, coupled with millions of fiber optic connectors, span continents and circle the globe making this communciation possible. The rapid expansion in use of the Internet drives the broader optical market. Optical networks transmit voice, video, and data across the country and around the world.
My humble experience in optical communication systems has shown me that fiber optics technology is a wonder to behold. I understand and teach my students daily that when the transmitter sends a signal through a whisker-thin optical fiber, the signal is carried on a beam of light that travels in waves.
The number of waves that leave the transmitter per second is the frequency. The higher the frequency, the more information is carried. Since light waves have such a high frequency, fiber optic cable can carry thousands of times more information than current flowing through a copper wire.
I understand that a fiber optic cable the size of an ordinary electrical cord can replace a copper cable hundreds of times thicker. I learned early in my optoelectronics and fiber optics career that copper cables are susceptible to static, which interferes with communication.
Because optical fibers carry light beams, they are free of electrical noise and electromagnetic interference (EMI). Recent breakthoughs in fiber technology, such as wavelength division mulitiplexing (WDM) and optical amplifiers, have made transmission of an incredible amount of information across a single strand of fiber optic cable possible.
In 1995, Nicolas Negroponte wrote in Being Digital:
We don’t know how many bits per second we can send down a fiber. Recent research says we’re close to being able to deliver 1,000 billion bits per second. This means a fiber the size of a human hair can deliver every issue ever printed of the Wall Street Journal in less than a second (Johnson, 1998, ¶8).
A year later, a trillion bits per second were successfully transmitted, error free.
I just recently attended a webinar titled “The "40GE and 100GE: Ready for Prime Time?” presented by Telecommunications Online and Infonetics Research, and sponsored by JDSU, Mintera, and Nokia Siemens Networks. The basic driver behind the growth to 40 Gigabit Ethernet and 100 Gigabit Ethernet is the traffic keeps growing and the future traffic will be crushing. More use and new services are driving demand, video is becoming a major bandwidth driver, high capacity storage area network (SAN) requirements are exploding, and 40G router interfaces are driving OC-768 (40 Gigabit) capability.
I learned during this webinar that in order for us to effectively upgrade systems to 40 Gb/s and 100 Gb/s that we first must address the transport and transmission issues. There are 40G systems already deployed and in use today. They support 80 x 40G in the C band of the electromagnetic spectrum.
They can transparently reach to lengths greater than 1500 kilometers; have a high tolerance to Chromatic Dispersion (CMD) and an increased tolerance to Polarization Mode Dispersion (PMD). Both 40G-only and mix of 10G/40G links are currently deployed in networks of major carriers in North America and Europe. Who knows what the future holds?
Most people in the fiber optics industry have their eye on the business community’s and homeowner’s demand for high-speed local area networks (LANs) consiting of fiber optic cable, connectors and related products. This end of the market is ready to explode, say many industry observers, now that fiber has made the move from being a primarily backbone cable for large networks to now linking directly to the home in Verizon’s Fiber Optic System (FiOS) technology.
The fiber to the home and desktop is driven by the requirement of PC software applications for more bandwidth on the cabling media that carry information (i.e. voice, video and data) to the home and businesses.
I started my career in fiber optics while I was still active duty in the Navy (Document 4). This was 1993, which was a new and exciting time to be studying and learning optical communication systems in the military. The Navy was just beginning to convert over their legacy copper networks and upgrading them to fiber optic communication network designs. My career in fiber optics technology actually started when I was assigned as a 3M (Materials, Management, and Maintenance) Systems Coordinator, Fiber Optic LAN Administrator onboard USS Briscoe (DD-977), Norfolk, VA (Document 5, Document 1).
While on the Briscoe, I received specialized advanced training in Unix Systems Administration, Novell Systems Administration, and Fiber Optics technology. I was very lucky to be “chosen” for this training, because at the time there were only a few schools specializing in optical communication systems. After this formal training, I assumed and eagerly took on the additional role as Briscoe's Fiber Optics Computer Network Systems Administrator (Document 2).
This is where I first was introduced to the truly exciting profession of fiber optics communication systems technology. This tour of duty was where I started to concentrate my interests in the area of optoelectronics, optical fiber, transmitters, receivers, amplifiers, and active and passive optical components.
My career plan after retiring from the Navy was to change jobs not too often, but not to stay very long at any one company. I had just spent the last 22 years with the same company and my goal was to learn new things, contribute enough, and then after three or four years, move to the next level at a new company. This all changed though while I was attending ECPI College of Technology during my last Navy active duty tour.
During the evenings for the next two years, I attended ECPI and finally reached my first education goal, achieving an Associates of Applied Science degree in Computer Electronics Engineering Technology. While attending ECPI, I took several electronics and optics courses including Electricity Fundamentals, Electronics Technology I, Electronics Technology II, Digital Technology I, Digital Technology II, and Fiber Optic Communication (Document 6).
This only proved to spark my interest even more in fiber optics technology. So early in my optics career I attended two more industry fiber optics certification courses and earned my Electronics Technicians Association, International fiber optics industry certifications as a Certified Fiber Optics Installer and Certified Fiber Optics Technician (Document 7, Document 8).
In the Certified Fiber Optics Installer course, I was introduced to fiber optics and established a thorough understanding of the fiber optics industry and its technology, common terminology, fiber optic theory, and photonic components. In addition, I learned to assemble fiber optic connectors using standard commercial-off-the-shelf (COTS) connectors, test fiber optic connectors, splices, and cables in accordance with telecommunication industry standards.
Finally, I learned to build and test fiber cables and photonic components using standard mechanical splices and learn appropriate techniques for fusion splicing and testing fiber optic cables with both an Optical Loss Test Set (OLTS) and an Optical Time Domain Reflectometer (OTDR).
I understood early in my career in optical communications that I must continue to build on my solid foundation in fiber optic theory. In the Certified Fiber Optics Technician course, I learned in detail fiber optic cable technology. It examined more in-depth the electronics technology built into fiber optic transmitters, receivers, and test equipment.
In addition, I learned how to test and troubleshoot a fiber optic link to the current industry standards. These industry certifications demonstrate to my employer that I have the knowledge and hands-on skills required to install, test, and troubleshoot fiber optic links and systems.
While attending ECPI College of Technology, I met some of the lead technical faculty at the college, and they showed an interest in hiring me to teach part-time electronic and fiber optics technology courses in the evenings at the college, once I graduated from ECPI. As a result, while I was still on active duty, I started teaching both electronic and fiber optics technology courses for ECPI College of Technology.
Once I completed my active duty tour and retired from the Navy, ECPI College hired me on as a full time Technical Faculty member. So as a result, I began a very exciting and promising career as an educator and fiber optics training specialist for ECPI College of Technology and our subsidiary corporate and military training company Infotec (Document 27).
I had been working at ECPI College of Technology for two years and was very happy, when out of the blue my bosses called to speak with me about a promotion. Turns out that ECPI was looking to expand their fiber optics programs (Document 26) and they asked me to become the Lead Technical Faculty and Coordinator of Fiber Optics programs for all of ECPI Colleges.
No one had ever been given this position before at the college, but I felt that I could handle this position with my past expertise and knowledge in the optical communication systems. So I spent a couple of days thinking, doing a little bit of brainstorming, then met with my Department Head and told him I was confident that I not only could expand ECPI’s fiber optics communications programs, but that I could expand it to our other campuses and start a nationally recognized Electronics Technicians Association, International (ETA-I) training program in fiber optics installation and technician (Document 25).
I knew that if I was going to pull this off that I would need more in depth fiber optics experience, so I requested to attend several optical industry courses of instruction to strengthen my optical communication systems knowledge.
One of the first courses that I attended was called “Fiber Optic Design Course for Multimode and Single-mode Networks” (Document 15). This optical design course targets optical engineers who desire an in-depth knowledge of optical local area networks. The intensive course was written and taught by experience Corning system engineers who work with consultants and end-users daily and meet their optical network requirements.
This course covered all aspects of successful fiber optic system design from the network protocols, network configurations, optical cabling, industry communication standards, determination of fiber count, hardware selection including optical sources whether laser or LED, advanced splicing/termination methods, and cable system testing and documentation. All that I learned was put into practice through multiple and intensive case studies (Corning Cable Systems, 2005).
While I was at this optical engineering course I was generously given permission from our college President to open a constructive dialogue with the engineers and training department at Corning. What I wanted to do is form a training partnership with Corning, so that I could take all that I learned back with me to ECPI and develop a fiber optic design college course of instruction.
Corning granted ECPI permission to use their course materials (of course for a price), so that I could modify and use in the educational course that I would develop for ECPI. I went back to the college and applying what I learned, I developed our Certified Fiber Optics Designer course (Document 22).
I then took this particular course development to the next level and asked the Electronics Technicians Association, International if I could develop an industry fiber optics certification for fiber optic designers. I spent the next year developing the knowledge and practical skills learning objectives, and authoring the very first ETA Certified Fiber Optics Designer examination (Document 28).
I piloted the very first nationally and fiber optics industry certification course with Verizon Telecommunications Technicians as my first students, in my fiber optics laboratory in Virginia Beach. I was the very first ETA Certified Fiber Optics Designer (Document 9) in the country.
I learned a great deal from the “Fiber Optic Design Course for Multimode and Single-mode Networks” course. As part of this course, I had to learn how to design an optical communication system from the ground up. I learned how important the fiber selection is in the design and how wave propagation, chromatic dispersion, polarization mode dispersion, and both linear and non-linear fiber losses effect your final decision in the design.
As a designer of optical communcation systems I understand the important role the optical transmitters, optical receivers, and optical amplifiers play in the design. Furthermore, as part of the course we had to calculate a power budget (Corning Cable Systems, 2005). A power budget as defined in IEEE Standard 802.3 is the minimum optical power available to overcome the sum of attenuation plus power penalties of the optical path between transmitter and receiver.
I quickly learned bit-error rate calculations in order to effectively calculate a power budget for both a multimode fiber optic link and a single-mode fiber optic link design. Finally, I learned about the different optical network topology designs including Ethernet, Fiber Distribution Data Interface (FDDI), Synchrounous Optical Network (SONET), Asynchronous Transfer Mode (ATM) and Fibre Channel, and the specific design guidelines involved with these optical communication systems (Document 33).
Previously, optical fiber networks were designed to satisfy specific application(s) requirements, either data, voice, or video. Today, the true benefits of optical fiber are being realized and used to design optical communication systems independent of specific applications. One of the most important topics I learned in this course is the importance of learning and understanding the Telecommunication Industry Association (TIA)/Electronics Industry Alliance (EIA), Institute of Electrical and Electronics Engineers (IEEE), and Telecordia standards.
These telecommunication cabling systems standards were developed to define standards for both copper and optical communication systems. I have since read, studied, and learned several substantial TIA/EIA, IEEE, and Telecordia industry standards and incorporated this knowledge into my fiber optic communication courses (Document 29).
The successful deployment of information technology is critical to the success of most optical communication systems. The need to access and share information is fueling a new level of demand for applications like the internet and intranet and client/server implementations. In turn, I learned that this is driving the need for greater bandwidth, or network speed, to new levels in the backbone and ever closer to the work area and now into our homes with Verizon Fiber Optics System (FiOS).
As the data rates of networking continue to escalate, the use of optical communication systems is becoming even more widespread. I am very busy these days training many contractors, military, and end-users that are now only beginning to deploy fiber for the first time. Others that I have trained are upgrading their legacy copper systems with optical fiber to enhance system bandwidth capability, system performance and/or extending the reach of existing installations.
One of the most challenging series of decisions a telecommunications manager makes is the proper desing of an optical communication system. Optical fiber cable, which has extremely high bandwidth, is a powerful telecommunications media that supports voice, data, video and other applications. However, the effectiveness of the media is greatly diminished if proper connectivity, which allows for flexibility, manageability, and versatility of the cable plant, is not designed into the system.
As the Lead Technical Faculty and Coordinator of Fiber Optics Programs for ECPI College of Technology and Infotec (Document 1), I understand that new technologies, new applications and the need for in-depth product knowledge challenge us to continually enhance our training capabilities. Along those lines I felt it necessary to further strengthen my experiential learning knowledge on the latest optical communication systems.
In 2002, I attended the Sumitomo Electric Lightwave FutureFLEXÒ System Network Standards certification course at Research Triangle Park, NC covering the design, engineering, installation, and administration of the FutureFLEX Air-Blown FiberÒ Optic Cabling System (Document 13). FutureFLEXÒ Air-Blown Fiber (ABF) is a cabling system that transports fiber optic bundles through pre-installed tubes using air or dry nitrogen.
This ground breaking technology was developed by British Telecom in 1982. In 1987, a license was granted to Sumitomo by British Telecom, and in 1990 FutureFLEX was introduced in the United States (“FutureFLEX”, n.d.).
I have included the theory and knowledge of this cabling system into my Military Fiber Optics Installation Professional course (Document 23) that I developed in order to meet the Department of Defense Military Standards Practice for fiber optics installation guidelines. Air Blown Fiber technology delivers the mission critical reliability, security, and rapid distaster recovery necessary for all military applications.
I teach my students about how this cabling system can be utilized in a variety of applications including data communications, LAN and WAN networks, CCTV, Voice communications and more. This technology has a long and distinguished record of serving all branches of the military including its wide adoption as the premier fiber optic LAN backbone solution for naval shipboard applications.
I am a very passionate person about fiber optics communication technology, which is a major plus for attracting new fiber business opportunities for both the college and Infotec. Teaching at both ECPI and Infotec has been a wonderful opportunity for me personally and professionally. Both companies are not afraid to allow their employees to continue to attend, study, and learn about the latest and greatest technology, so that we can incorporate this learned knowledge and skills into our curriculum development.
I enjoy interacting with people; as the Lead Technical Faculty and Coordinator of Fiber Optics programs it has given me the opportunity to meet many different optics industry personnel from all over the world. I am very pleased about the fiber optics courses that I have personally developed, co-authored and teach, including Certifed Fiber Optics Installer, Certified Fiber Optics Technician, Certified Fiber Optics Designer, Military Fiber Optics Installation Professional, and Data Cabling Installer Certification (Document 16, Document 17, Document 18, Document 10).
I continue to expand both mine and my students knowledge in the optics arena by co-authoring the development our newest fiber optics program called Aerospace Fiber Optics Fabricator (Document 30). This training course focuses on proven training practices to meet the aerospace industries Society of Automobile Engineers International (SAE) and Aeronautical Radio Incorporated (ARINC) highest standards of training applicable to aerospace professionals engaged in aerospace fiber optic design, manufacturing, installation, maintenance, and repair for the air transport industry.
Furthermore, to show that I have continued to learn and expand my fiber optics knowledge, I became a member of the Electronics Technician Association in 1999 (Document 2) and volunteered to serve on the ETA's fiber optics examination committee. As a member and through my work on this committee, I assisted in the initial development and revision of knowledge and hands-on training competencies for the ETA’s Certified Fiber Optics Installer (FOI), Certified Fiber Optics Technician (FOT), Certified Fiber Optics Designer (FOD), and Data Cabling Installer Certification (DCIC) programs. In addition, I have authored several ETA certification examination questions.
These questions are based on the certification programs knowledge competencies and approved by an international committee of subject matter experts, which I am a member of (Document 28). Besides being an ETA Fiber Optics Examination Committee member, this past year I became a member of SPIE – The International Society of Optical Engineering (Document 3).
I tell my students everyday that if you are considering going into academia, teaching optical communications may be one of the most rewarding activities you will encounter. I have learned to enjoy it, to value the interaction with those I teach, to continue to keep learning from both industry professionals and from my students, and to be thankful about this great opportunity to be of service to my commununity.
I truly believe that I have proven that my current experiential learning background is that of a typical senior-level or graduate level optical communication systems student. Based on the experiences and knowledge, I've gained through my last 30 years in electronics and optics, I am respectfully requesting three semester hours of OPTI 430 Optical Communication Systems term credit from The University of Arizona.
References
Corning Cable Systems. (2005). Fiber Optic Design for Local Area Networks Training Course Manual. (Rev. 4). Hickory, NC: Author.
Corning Cable Systems. (2005). Fiber Optic Design for Local Area Networks Case Study Workbook. (Rev.4.). Hickory, NC: Author.
Corning Cable Systems. (2005). Fiber Optic Design Guide. (Rev. 6). Hickory, NC: Author.
FutureFLEXÒ The world’s most advanced infrastructure for the enterprise network. (n.d.). Retrieved January 23, 2008, from http://www.futureflex.com/productInformation/fflex_advantage.htm
IEEE Std 802.3 Local Area Networks: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specification. (2002). New York, NY: IEEE Std 802.3.
Johnson, G. (1998). Fiber: It’s Good for You. [Electronic version]. Electrical Wholesaling, ¶8. Retrieved January 26, 2008, from http://eeweb.com/mag/electric_fiber_good/
Negroponte, Nicholas. (1995). Being Digital. New York, NY: Random House, Inc.
Sterling, D. J., Jr. (2004). Technicians Guide to Fiber Optics (4th ed.) (p. 6). Clifton Park, NY: Cengage Delmar.
Documents
Document 1. ECPI College of Technology and Infotec Business Cards.
Document 2. Electronics Technicians Association, International (ETA-I) Membership Certificate.
Document 3. Society of Optical Engineers (SPIE) Membership Certificate.
Document 4. Sailor/Marine American Council on Education Registry Transcript (SMART).
Document 5. USS Briscoe (DD-977) Performance Evaluation (1995).
Document 6. Excelsior Status Report.
Document 7. Electronics Technicians Association, International (ETA-I) Certified Fiber Optics Installer Certification.
Document 8. Electronics Technicians Association, International (ETA-I) Certified Fiber Optics Technician Certification.
Document 9. Electronics Technicians Association, International (ETA-I) Certified Fiber Optics Designer Certification.
Document 10. Electronics Technicians Association, International (ETA-I) Data Cabling Installer Certification.
Document 13. Sumitomo Electric Lightwave Corporation, Design of FutureFLEXÒ Air Blown Fiber Systems Training Certificate.
Document 15. Corning Cable Systems Fiber Optic Design Course for Multimode and Single-mode Networks Completion Certificate.
Document 16. Electronics Technicians Association, International (ETA-I) Certification Administrator for Certified Fiber Optics Installer.
Document 17. Electronics Technicians Association, International (ETA-I) Certification Administrator for Certified Fiber Optics Technician.
Document 18. Electronics Technicians Association, International (ETA-I) Certification Administrator for Certified Fiber Optics Designer.
Document 22. ECPI College of Technology/Infotec Certified Fiber Optics Designer (FOD) Lecture Syllabus.
Document 23. ECPI College of Technology/Infotec Military Fiber Optics Installation Professional (MFOI) Lecture Syllabus.
Document 25. Letter of Verification from Teresa Maher, President of Electronics Technicians Association, International.
Document 26. Letter of Verification from Mr. John Jeffcoat, Vice President, ECPI College of Technology.
Document 27. Letter of Verification from Ann Perry, Executive Director of Infotec.
Document 28. Letter of Verification from Mr. William R. Woodward, Chairman of Electronics Technicians Association.
Document 29. Substantial Reading Bibliography including both textbooks and telecommunications industry standards.
Document 30. ECPI College of Technology/Infotec Electronics Technicians Association, International (ETA-I) Certified Aerospace Fiber Optics Fabricator course description.
Document 33. Corning Cable Systems Fiber Optic Design Course Syllabus
光通信系统
之前学习评估学习叙事OPTI 430光通信系统
第四上层的大学课程,我将用我的学习经验,预期的学习成果形成亚利桑那大学,光通信系统。光通信系统的革命开始了,当研究人员在纽约州康宁,康宁玻璃工程,在1970年发明光纤技术。
几十年来,极大地提高了光纤的质量和设计,并于1977年,第一个光纤网络构建和测试(英镑, 2004年,第6页) 。今天,世界经济体系是依赖于它的沟通能力和传输语音,视频和数据信息。
网络的光纤,光纤连接器,跨大洲,尽可能使这个communciation圈全球数以百万计的耦合。在利用因特网的迅速扩张驱动的更广泛的眼镜市场。光网络传输语音,视频和数据,在全国各地和世界各地。
我谦卑的光通信系统中的经验已经表明我说,光纤技术是一个奇迹脱俗。我明白了,每天教我的学生,当发射器发送信号通过晶须薄的光纤,信号波传播的光的光束进行。
离开发射器每秒的波的数目是频率。的频率越高,越多的信息进行。由于光波有如此高的频率,光纤电缆可以携带几千倍以上信息比铜导线的电流流经。
据我所知,光纤电缆的普通电线的大小,可以取代铜电缆数百次较厚。我学会了在我的光电子和光纤事业的早期,铜电缆易受静电,通信干扰。
由于光纤进行光束,它们都是免费的电气噪声和电磁干扰(EMI) 。最近breakthoughs ,如波分复用mulitiplexing ( WDM )和光放大器,光纤技术已经取得了令人难以置信的大量信息的传输光缆可能在一个单链。
1995年,尼古拉斯·内格罗蓬特在数字化生存中写道:
我们不知道有多少位,每秒可以发送了光纤。最近的研究说,我们能够提供每秒1000亿比特。这意味着纤维的大小只有人类头发永远印在华尔街日报的每一个问题,可以提供小于第二(约翰逊, 1998年, 8) ¶ 。
一年之后,一兆比特每秒成功发送,无差错。
我只是最近参加了一个网络研讨会,题为“ 40GE和100GE :黄金时间做好准备?”电信在线和Infonetics研究,并赞助JDSU , Mintera公司和诺基亚西门子通信公司的基本增长背后的驱动程序到40千兆以太网和100千兆以太网的流量不断增加,未来的交通将被粉碎。使用和新服务的需求正推动,视频正在成为一个主要的带宽驱动器,高容量的存储区域网络( SAN )的要求爆炸, 40G路由器接口驱动OC-768 ( 40千兆位)的能力。
我在这个网络研讨会上了解到,为了让我们有效地提升系统的40 Gb / s和100 Gb / s的,我们必须首先解决交通和传输问题。 40G系统已经部署在今天使用。他们支持80× 40G在C波段的电磁频谱。
他们可以透明地到达长度超过1500公里,有很高的耐色散( CMD )和偏振模色散( PMD )的耐受性增加。只有40G-和组合的10G/40G链接的目前在北美和欧洲的主要运营商的网络部署。谁知道将来会怎样?
光纤行业中的大多数人有自己的眼睛,商界和房主的高速局域网(LAN)的光缆,连接器及相关产品consiting需求。这个高端市场是随时会爆炸,许多行业观察家说,现在光纤已经作出的举动从主要为大型网络的主干电缆直接连接到Verizon的FiOS的光纤系统( )技术的家中。
驱动光纤到家庭和桌面PC的应用软件的要求更多的带宽布线介质携带的信息(即语音,视频和数据)的家庭和企业。
光纤,而我仍然在海军现役( 4号文件) ,我开始了我的职业生涯。这是1993年,这是一个新的和激动人心的时刻在军事光通信系统的研究和学习。海军才刚刚开始转换传统铜线网络升级到光纤通信网络设计。我的职业生涯中光纤技术实际上开始时,我被分配为3M (材料,管理与维护)系统协调员,光纤局域网管理员板载USS布里斯科( DD -977 ) ,诺福克,弗吉尼亚州( 5号文件,文献1) 。
虽然在布里斯科,我收到了Novell的系统管理, UNIX系统管理和光纤技术的专业高级培训。 “选择”这个培训我很幸运,因为在当时只有少数学校专业光通信系统中。在此之后正式的训练,我假设,并急切地采取额外的作用布里斯科光纤计算机网络系统管理员(文献2) 。
这是我第一次被引入到光纤通信系统技术真正令人兴奋的职业。这次巡演的责任是我开始的地方,我在光电领域的利益,光纤,发射器,接收器,放大器,有源和无源光学元件集中。
从海军退役后,我的职业生涯规划是不要过于频繁地更换工作,而不是在任何一个公司呆很长时间。我刚刚度过了过去22年在同一家公司,我的目标是学习新的东西,足够的贡献,三年或四年后,移动到一个新的水平在一个新的公司。这一切都变了,虽然我参加ECPI技术学院在我的最后一个海军现役旅游。
在未来两年到了晚上,我出席ECPI ,终于达成了我的第一个教育目标,实现应用科学学士学位,在计算机电子工程技术的联营公司。出席ECPI时,我拿了几个电子和光学课程,包括电力基础知识,数码科技,数码科技,电子科技II电子科技我我, II ,和光纤通信(文件6 ) 。
这只能证明,激发了我的兴趣更是在光纤技术。所以早期我的光学生涯中,我参加了两个行业光纤认证课程,并赢得了我的电子技术员协会,国际光纤行业认证作为认证的光纤安装和会计师光纤技术员( 7号文件,文件8) 。
在认证的光纤安装过程中,我被介绍到光纤,并建立了一个透彻的了解光纤行业和技术,共同的术语,光纤理论,和光子元件。此外,我学会了组装光纤连接器使用标准的商业现成的现成(COTS)的连接器,测试光纤连接器,接头,电缆,按照电信行业标准。
最后,我学会了构建和测试光纤电缆和光子元件采用标准的机械接头和学习适当的方法,熔接和测试光损耗测试仪( OLTS )和光时域反射仪(OTDR )光纤电缆。
我理解光通信早在我的职业生涯中,我要继续在光纤理论建立在坚实的基础。认证光纤技术员课程,我学会了详细光缆技术。研究更深入的光纤发射器,接收器和测试设备中内置的电子技术。
此外,我学会了如何测试和解决目前行业标准的光纤链路。这些行业认证,证明给我的老板,我的知识和动手能力光纤链路和系统安装,测试,并解决所需。
出席ECPI技术学院,我遇到了一些领先的技术教师在大学,他们表现出的兴趣雇用我教兼职,电子和光纤技术在晚上在大学的课程,有一次我毕业于ECPI 。因此,当我还在现役,我开始教电子和光纤技术ECPI科技学院的课程。
一旦我完成了我的现役之旅,从海军退役, ECPI学院聘请我作为一个全职技术学院成员。因此,作为一个结果,我开始了一个非常令人兴奋和有前途的事业,作为一个教育工作者和光纤ECPI技术学院和我们的附属公司和军事训练公司INFOTEC ( 27号文件)的培训专家。
我已经工作两年ECPI技术学院,感到非常高兴,当我的老板叫出来的蓝色同我讲,关于推广的。 ECPI希望扩大自己的光纤计划“ ( 26号文件) ,他们问我要成为ECPI学院所有的光纤方案技术学院牵头和协调。
从来没有人得到这个位置,之前在大学,但我觉得我能胜任这个位置在光通信系统与我过去的专长和知识。所以我花了几天思考,做一个小一点的头脑风暴,然后遇见我的部门主管,告诉他我有信心,我不仅可以扩大ECPI的光纤光学通信程序,但我可以扩大它向我们的其他校园并启动一个全国公认的电子技术员协会,国际( ETA -I )光纤安装和技术人员的培训计划( 25号文件) 。
我知道,如果我打算退出这个功能,我需要更深入光纤体验,所以我要求参加一些眼镜行业的指导课程,以加强我的光通信系统知识。
我参加的第一个课程之一被称为“光纤设计多模和单模网络课程” ( 15号文件) 。这种光学设计课程目标,光学工程师,谁的愿望光学局域网络的深入了解。密集课程,编写和教授的经验康宁系统工程师,顾问和最终用户的日常工作,并满足他们的光网络要求。
本课程涵盖从网络协议,网络配置,光纤电缆,行业通信标准,测定纤维计数,硬件选择,包括激光或LED ,先进的拼接/终止方法,和电缆系统的光源是否成功的光纤系统设计的各个方面测试和文档。付诸实践,我学会了通过多个密集的案例研究(康宁光缆系统,2005年) 。
虽然我是在这个光学工程课程,我慷慨地给我们的大学校长的许可,开启一个建设性的对话与工程师和培训部门在康宁。我想要做的是什么形成了培训与康宁的合作,这样我就可以采取一切跟我回去,我学会了ECPI和发展的光纤设计大学课程教学。
康宁授予ECPI许可使用其课程教材(当然价格) ,这样我就可以在教育的过程中,我会开发ECPI修改和使用。我又回到了大学,并运用我学到了什么,我开发了我们的认证的光纤设计课程( 22号文件) 。
然后,我把这个特殊的课程发展到一个新的水平,并要求电子技术员协会,国际的,如果我能开发一个工业光纤光纤设计师认证。我花了明年发展的知识和实际技能的学习目标,并创作第一ETA认证光纤设计审查( 28号文件) 。
我驾驶的全国第一和光纤光学行业认证课程与Verizon电信技术员作为我的第一个学生,我的光纤光学实验室在弗吉尼亚海滩。我是第一ETA认证光纤设计师( 9号文件) ,在该国。
我学到了很多,从“光纤多模和单模网络”课程设计课程。作为本课程的一部分,我不得不学习如何设计从地上爬起来的光通信系统。我学会了在设计和波的传播,色散,偏振模色散,线性和非线性光纤亏损如何影响你的最终决定设计纤维的选择是多么的重要。
作为光通信电子系统的设计师,我明白光发射机,光接收机,光放大器在设计中发挥的重要作用。此外,作为课程的一部分,我们不得不计算功率预算(康宁光缆系统,2005年) 。 IEEE 802.3标准中定义的功率预算是最低的光功率可克服发射器和接收器之间的光路衰减,加上电源处罚的总和。
我很快就学会了误码率计算,以有效地计算出多模光纤链路和单模光纤链路设计的功率预算。最后,我学到了不同的光网络的拓扑结构设计,包括以太网,光纤分布数据接口(FDDI) , Synchrounous光网络( SONET ) ,异步传输模式(ATM)和光纤通道,以及参与这些光通信系统的具体设计指引(文献33 ) 。
此前,光纤网络的设计,以满足特定的应用程序( S)的要求,无论是数据,语音或视频。今天,实现光纤的真正好处,并用于设计光通信系统中,独立于特定的应用程序。在这个过程中我学到的最重要的议题之一是电信工业协会(TIA) /电子工业联盟( EIA ) ,电气和电子工程师学会( IEEE ) , Telecordia公司标准的学习和理解的重要性。
这些电信布线系统的标准来定义标准的铜缆和光纤通信系统。因为我已经阅读,研究,并学到了一些实质性的TIA / EIA ,IEEE和Telecordia公司行业标准,并纳入到我的光纤通信课程( 29号文件) ,这方面的知识。
信息技术的成功部署,大多数光通信系统的成功是至关重要的。访问和共享信息的需要刺激需求的应用,如Internet和Intranet和客户机/服务器实现一个新的水平。反过来,我了解到,这是驾驶需要更大的带宽或网络速度,在骨干到新的水平越来越接近工作区,现在变成我们的家园与Verizon的FiOS光纤系统。
随着网络的数据传输速率的不断升级,光通信系统中的使用变得更加普遍。我这几天很忙许多承包商,军事培训和最终用户,现在才刚刚开始部署光纤的第一次。其他,我已经训练提升他们的传统铜系统的光学纤维,以提高系统的带宽容量,系统性能和/或扩展现有设施的覆盖范围。
的最具挑战性的一系列判决的电信管理器使得德兴的光通信系统是适当的。光纤电缆,它具有非常高的带宽,是一个功能强大的电信媒体,支持语音,数据,视频和其他应用程序。然而,媒体的有效性大大减弱,如果正确的连接,允许灵活性,可管理性和多功能性的电缆厂,是不是设计到系统中。
作为牵头技术学院ECPI学院的技术和INFOTEC (文献1)光纤项目协调员,据我所知,新技术,新应用和深入的产品知识挑战需要我们不断提高我们的培训能力。沿着这些线路,我觉得有必要进一步加强我的体验学习知识的最新的光通信系统。
2002年,我参加住友电工光波FutureFLEXÒ系统网络标准认证课程在北卡罗莱纳州研究三角园,涵盖设计,工程设计,安装,和管理的吹空气FutureFLEX的FiberÒ光纤布线系统( 13号文件) 。 FutureFLEXÒ空气吹纤( ABF )是一个综合布线系统,光纤束传输通过预装管使用空气或干燥氮气。
这一突破性的技术是由英国电信于1982年。在1987年,被授予许可证住友由英国电信,并于1990年在美国推出FutureFLEX ( “ FutureFLEX ” ,ND ) 。
我已经包含了这个布线系统的理论和知识,我的军事光纤安装专业课程( 23号文件) ,是我公司开发,以满足国防军事标准实践部光纤安装指引。空气吹纤技术,提供关键任务的可靠性,安全性,和的快速distaster恢复所需的所有军事上的应用。
我教我的学生如何在各种各样的应用,包括数据通信,局域网和广域网,中央电视台,语音通信,更可以利用这个布线系统。这项技术有一个长期和杰出的服务记录所有的兵种,包括其最大的光纤局域网主干海军舰载应用解决方案的广泛采用。
有关光纤通信技术,这是一个重大的加INFOTEC学院和吸引新的纤维业务的机会,我是一个非常热情的人。 ECPI INFOTEC教学一直是一个极好的机会,我个人和专业。两家公司都不怕,让他们的员工继续参加,学习,了解最新和最伟大的技术,所以我们可以将学到的知识和技能纳入我们的课程开发。
我喜欢与人交往;作为牵头技术学院和光纤计划协调员它给了我机会,以满足来自世界各地的许多不同的光学元件行业的人员。我很高兴的光纤课程,我曾亲自开发,合作撰写和教导,包括Certifed光纤安装,光纤技术员认证,认证的光纤设计,军用光纤安装专业和数据布线安装认证(文件16 ,文件17 ,文件18 ,文件10) 。
我继续在光学领域,努力扩大我和我的学生的知识共同创作的发展,我们最新的光纤称为航天光纤加工商( 30号文件)的程序。本次培训课程的重点是行之有效的培训方法,以满足航空航天业的国际汽车工程师学会( SAE )和航空无线电公司( ARINC)最高标准的培训,适用于航空航天专业从事航空航天光纤设计,制造,安装,维护,修为航空运输业的发展。
此外,为了表明我继续我的光纤知识学习和拓展,我成了电子技术员协会的成员,在1999年( 2号文件) ,并自告奋勇担任埃塔的光纤审查委员会。作为一个成员,并通过我对这个委员会的工作,我协助的初始开发和修订的知识和手, ETA的认证光纤光学安装( FOI ) ,认证光纤光学技术员( FOT ) ,培训能力认证光纤光学设计师( FOD ) ,和数据综合布线安装认证程序( DCIC )的。此外,我还撰写了几ETA认证试题。
这些问题都是基于认证计划的知识能力和学科专家,我( 28号文)的成员由一个国际委员会的批准。除了埃塔光纤考试委员会成员,在过去的一年中,我成为SPIE - 国际光学工程学会(文献3)中的一员。
我告诉我的学生每天,如果你正在考虑进入学术界,教学光通信可能你会遇到的最有意义的活动之一。我已经学会去享受它,重视互动与那些我教,继续保持业内专业人士,从我的学生学习,并要感谢这个伟大的机会,我commununity服务。
我真的相信,我已经证明了我目前的体验式学习的背景,是一个典型的高层或研究生水平的光通信系统的学生。根据我的经验和知识,我过去30年来在电子和光学已经获得通过,我恭敬地请求OPTI 430光通信系统的长期信贷从亚利桑那大学的三个学期小时。
参考文献
康宁光缆系统。 (2005年) 。光纤局域网设计培训课程手册。 (牧师4 ) 。卡罗莱纳州Hickory :作者。
康宁光缆系统。 (2005年) 。光纤局域网设计的案例研究工作簿。 (1版) 。卡罗莱纳州Hickory :作者。
康宁光缆系统。 (2005年) 。光纤设计指南。 ( 6版) 。卡罗莱纳州Hickory :作者。
FutureFLEXÒ世界上最先进的基础设施,为企业网络。 (不详) 。 2008年1月23日,从http://www.futureflex.com/productInformation/fflex_advantage.htm
IEEE标准802.3局域网络的载波侦听多路访问冲突检测( CSMA / CD )访问方法和物理层规范。 (2002年) 。纽约,纽约: IEEE 802.3标准。
约翰逊, G. (1998) 。纤维:它是适合你的。 [电子版] 。电气批发,¶ 8 。 2008年1月26日,从http://eeweb.com/mag/electric_fiber_good/
内格罗蓬特,尼古拉斯。 (1995) 。数字化生存。纽约,纽约:兰登书屋公司
英镑,小D. J. (2004) 。技术员指导到光纤(第4版)(第6页) 。纽约州Clifton Park :圣智德尔玛。
文件
文献1 。 ECPI科技学院INFOTEC名片。
文献2 。电子技术员协会,国际( ETA -I )会员证书。
文献3 。光学工程学会( SPIE )会员证书。
文献4 。水手/海洋教育注册表成绩单( SMART )美国会。
文件5 。 USS布里斯科( DD -977 )性能评价( 1995年) 。
文献6 。怡东状态报告。
文献7 。电子技术员协会,国际( ETA -I )认证的光纤安装认证。
文献8 。电子技术员协会,国际认证光纤技术员( ETA -I )认证。
文献9 。电子技术员协会,国际( ETA -I )光纤认证设计师证书。
文件10 。电子技术员协会,国际( ETA -I )数据电缆安装认证。
文献13 。住友电工光波公司,设计的FutureFLEXÒ空气吹制光纤系统培训证书。
文献15 。康宁光缆系统光纤设计的多模和单模网络课程结业证书。
文献16 。电子技术员协会,国际( ETA -I )认证管理员认证的光纤安装。
文献17 。电子技术员协会,国际( ETA -I )认证管理员认证光纤技术员。
文献18 。电子技术员协会,国际( ETA -I )认证管理员认证光纤设计。
文献22 。 ECPI技术学院/ INFOTEC会计师光纤设计师( FOD)讲座教学大纲。
文献23 。 ECPI学院科技/ INFOTEC军事光纤安装专业讲座( MFOI )教学大纲。
文献25 。邓丽君马希尔核查函件,电子技术员协会,国际主席。
文献26 。核查函件Jeffcoat先生,副总裁, ECPI技术学院。
文献27 。核查函件安·佩里, Infotec公司的执行董事。
文献28 。核查函件,电子技术协会主席威廉·伍德沃德先生。
文献29 。包括教科书和电信行业标准的主要阅读参考书目。
30号文件。 ECPI科技学院/ INFOTEC电子技术员协会,国际认证的航空航天( ETA -I )光纤钣金及课程说明。
33号文件。康宁光缆系统光纤设计课程大纲